跳至內容

使用者:TNTErick/Draft:k Restriction

來自維基學院

證明之定理同應用

[編輯 | 編輯原始碼]

應用一: 項鍊分割問題

[編輯 | 編輯原始碼]

項鍊分割,或更精確地說,k-段,t-相項鍊分割,指的是

A k-wise t-way splitter is a set of partitions of [m] into b sets, so that for every k coordinates within [m], each having a color in [t], there exists a partition so that every set 1 ≤ j ≤ b contains the same number of coordinates of each color up to rounding. This is a generalization of the existing notion of a splitter introduced by [18]. Splitters are multi-way splitters for t = 1. Splitters and multi-way splitters are used to split a problem of the form 「for every k coordinates,...」 into b problems of the form 「for every dk/be coordinates,...」. The advantage of 2 multi-way splitters is that they give more control on the split. They allow us to split a problem of the form 「for every k coordinates, for every partition of the coordinates into t types,...」 into b problems of the form 「for every dk/be coordinates, for every partition of the coordinates into t types,...」.

A k-wise t-way splitter for splitting m coordinates into b blocks of size where , may be constructed in time poly (m, t^k and the size of construction) .