n次方程 x n + ( p + 4 − p 2 ) n − 2 n x = 1 p n 2 n − 2 , n ≠ 1 , n ≠ 0 {\displaystyle x^{n}+{{({\frac {{\sqrt {p+4}}-{\sqrt {p}}}{2}})}^{\frac {n-2}{n}}}x={\frac {1}{p^{\frac {n}{2n-2}}}},n\neq 1,n\neq 0} 存在李煌解形式 x = ( ( p + 4 − p ) 2 4 p n 2 n − 2 ) 1 n , p > 0 , p ∈ R {\displaystyle x=\left({\frac {{({\sqrt {p+4}}-{\sqrt {p}})}^{2}}{4p^{\frac {n}{2n-2}}}}\right)^{\frac {1}{n}},p>0,p\in \mathbb {R} } x = ( ( p + 4 − p ) 2 4 p n 2 n − 2 ) 1 n cos ( 2 π n ) + i s i n ( 2 π n ) , p < 0 , p ∈ R {\displaystyle x={\frac {\left({\frac {{({\sqrt {p+4}}-{\sqrt {p}})}^{2}}{4p^{\frac {n}{2n-2}}}}\right)^{\frac {1}{n}}}{\cos({\frac {2\pi }{n}})+isin({\frac {2\pi }{n}})}},p<0,p\in \mathbb {R} }
如果 c = b + 2 , b ∈ Z , 2 ∤ b {\displaystyle c=b+2,b\in Z,2\nmid b} 成立
则必须满足整除关系
16 ∣ ( − b 4 c 4 + 124 b 4 c 2 − 2212 b 4 − 4 b 3 c 5 − 22 b 3 c 4 {\displaystyle 16\mid {\bigg (}-b^{4}c^{4}+124b^{4}c^{2}-2212b^{4}-4b^{3}c^{5}-22b^{3}c^{4}} + 724 b 3 c 2 + 2 b 2 c 6 − 62 b 2 c 5 − 149 b 2 c 4 {\displaystyle +724b^{3}c^{2}+2b^{2}c^{6}-62b^{2}c^{5}-149b^{2}c^{4}} + 940 b 2 c 3 + 2030 b 2 c 2 − 12708 b 2 {\displaystyle +940b^{2}c^{3}+2030b^{2}c^{2}-12708b^{2}} + 12 b c 7 + 22 b c 6 − 214 b c 5 + 1548 b c 3 {\displaystyle +12bc^{7}+22bc^{6}-214bc^{5}+1548bc^{3}} + 2754 b c 2 − 9 c 8 + 30 c 7 + 63 c 6 − 314 c 4 + 942 c 3 ) {\displaystyle +2754bc^{2}-9c^{8}+30c^{7}+63c^{6}-314c^{4}+942c^{3}{\bigg )}}
如果 a n + b n = c n , 2 ∤ b , 2 ∤ c , n ∈ Z , n > 1 , a ∈ Z , b ∈ Z , c ∈ Z , {\displaystyle a^{n}+b^{n}=c^{n},2\nmid b,2\nmid c,n\in Z,n>1,a\in Z,b\in Z,c\in Z,} 成立
16 ∣ ( 6 c 3 n + 2 c 4 n − 4 c 5 n + 27 c 6 n + 6 c 7 n − 9 c 8 n − 4 c 2 n {\displaystyle 16\mid {\bigg (}6{c^{3n}}+2{c^{4n}}-4{c^{5n}}+27{c^{6n}}+6{c^{7n}}-9{c^{8n}}-4{c^{2n}}} + 22 b 2 n c 2 n + 28 b 2 n c 3 n + 2 b 2 n c 6 n + 12 b 2 n − 41 b 2 n c 4 n − 38 b 2 n c 5 n {\displaystyle {+22{b^{2n}}{c^{2n}}}+{28{b^{2n}}{c^{3n}}}+{2{b^{2n}}{c^{6n}}}+{12{b^{2n}}}{-41{b^{2n}}{c^{4n}}}{-38{b^{2n}}{c^{5n}}}} − 4 b n c 3 n − 12 b n c 4 n − 14 b n c 5 n + 14 b n c 6 n + 12 b n c 7 n − 6 b n c 2 n {\displaystyle {-4{b^{n}}{c^{3n}}}{-12{b^{n}}{c^{4n}}}{-14{b^{n}}{c^{5n}}}+{14{b^{n}}{c^{6n}}}+{12{b^{n}}{c^{7n}}}{-6{b^{n}}{c^{2n}}}} − 52 b 4 n + 44 b 4 n c 2 n + 24 b 4 n c 3 n − b 4 n c 4 n + 52 b 3 n c 2 n − 14 b 3 n c 4 n − 4 b 3 n c 5 n ) {\displaystyle {-52{b^{4n}}}+{44{b^{4n}}{c^{2n}}}+{24{b^{4n}}{c^{3n}}}{-{b^{4n}}{c^{4n}}}+{52{b^{3n}}{c^{2n}}}{-14{b^{3n}}{c^{4n}}}{-4{b^{3n}}{c^{5n}}}{\bigg )}}
( a + b ) n = a b ( a + b ) n − 2 + a ( a + b ) n − 1 + b 2 ( a + b ) n − 2 {\displaystyle {{\bigg (}{a+b}{\bigg )}}^{n}={ab{(a+b)}^{n-2}}+{a{(a+b)}^{n-1}}+{b^{2}{(a+b)}^{n-2}}}
<<School:李煌數學研究院