2 ∫ 0 c Δ t 1 1 + ( a x c 2 + v c ) 2 d x + 2 ∫ 0 c Δ t 2 1 + ( a x c 2 + v + a Δ t 1 c ) 2 d x + ( 2 v + a ( Δ t ′ + Δ t 1 + Δ t 2 ) ) ( Δ t ′ − Δ t 1 − Δ t 2 ) = 2 c Δ t ′ {\displaystyle 2\int _{0}^{c\Delta t_{1}}{\sqrt {1+{({\frac {ax}{c^{2}}}+{\frac {v}{c}})}^{2}}}\,dx+2\int _{0}^{c\Delta t_{2}}{\sqrt {1+{({\frac {ax}{c^{2}}}+{\frac {v+a\Delta t_{1}}{c}})}^{2}}}\,dx+{(2v+a(\Delta t^{\prime }+\Delta t_{1}+\Delta t_{2}))(\Delta t^{\prime }-\Delta t_{1}-\Delta t_{2})}=2c\Delta t^{\prime }}
Δ t ′ = Δ t ( c 2 + v 2 − v c − v ) , M = m ( c 2 + v 2 − v c − v ) , L = l ( c − v c 2 + v 2 − v ) {\displaystyle \Delta t^{\prime }={\Delta t}\left({\frac {{\sqrt {c^{2}+v^{2}}}-v}{c-v}}\right),M=m\left({\frac {{\sqrt {c^{2}+v^{2}}}-v}{c-v}}\right),L=l\left({\frac {c-v}{{\sqrt {c^{2}+v^{2}}}-v}}\right)}
a → = d v → d t , F → ≈ M a → ( 1 + 3 v 2 c ) , P → ≈ M v → ( 1 + 3 v 4 c ) , E ≈ 1 2 M v 2 ( 1 + v c ) {\displaystyle {\vec {a}}={\frac {d{\vec {v}}}{dt}},{\vec {F}}\approx M{\vec {a}}(1+{\frac {3v}{2c}}),{\vec {P}}\approx M{\vec {v}}(1+{\frac {3v}{4c}}),E\approx {\frac {1}{2}}Mv^{2}(1+{\frac {v}{c}})}
Δ ν ν ≈ G M r c 2 ( 1 + 2 G M r r c ) {\displaystyle {\frac {\Delta \nu }{\nu }}\approx {\frac {GM}{rc^{2}}}(1+{\frac {\sqrt {2GMr}}{rc}})}
<<School:李煌数学研究院