1. a t 3 + b t 2 + c t + d = 0 ⇒ {\displaystyle at^{3}+bt^{2}+ct+d=0\Rightarrow } 以 t = x − b 3 a {\displaystyle t=x-{\frac {b}{3a}}} 代入
2.得 x 3 + p x + q = 0 {\displaystyle x^{3}+px+q=0} ,令其三根为 x 1 , x 2 , x 3 {\displaystyle x_{1},x_{2},x_{3}}
3.
4.
5.故 y 1 , y 2 {\displaystyle y_{1},y_{2}} 为 y 2 + q y + − ( p 3 ) 3 = 0 {\displaystyle y^{2}+qy+-({\frac {p}{3}})^{3}=0} 的两根
6.
题目: x 3 − 3 x + 2 = 0 {\displaystyle x^{3}-3x+2=0}
题目: x 3 − 12 x − 16 = 0 {\displaystyle x^{3}-12x-16=0}