滿足: x , ∀ a , ∀ b ≠ ( ∀ F ) ( h ) , a − b ≠ 0 , F ≠ c o n s t a n t − f u c t i o n − r u l e r {\displaystyle x,\forall a,\forall b\neq (\forall F)(h),a-b\neq 0,F\neq constant-fuction-ruler}
滿足: x , ∀ a , ∀ b ≠ ( ∀ F ) ( h ) , a ≠ b , F ≠ c o n s t a n t − f u c t i o n − r u l e r {\displaystyle x,\forall a,\forall b\neq (\forall F)(h),a\neq b,F\neq constant-fuction-ruler}
滿足: x , ∀ a , ∀ b , ∀ c ≠ ( ∀ F ) ( h ) , 2 a − b c ≠ 0 , F ≠ c o n s t a n t − f u c t i o n − r u l e r {\displaystyle x,\forall a,\forall b,\forall c\neq (\forall F)(h),2a-bc\neq 0,F\neq constant-fuction-ruler}
李煌-三階導數公式: f ‴ ( x ) = lim h → 0 6 f ( x + h ) − 6 f ( x ) − 6 h f ′ ( x ) − 3 h 2 f ″ ( x ) h 3 , x ≠ ( ∀ F ) ( h ) {\displaystyle f'''(x)=\lim _{h\to 0}{\frac {6f(x+h)-6f(x)-6hf'(x)-3h^{2}f''(x)}{h^{3}}},x\neq (\forall F)(h)}
李煌-三階導數公式: f ‴ ( x ) = lim h → 0 3 f ( x + h ) − 3 f ( x − h ) − 6 h f ′ ( x ) h 3 , x ≠ ( ∀ F ) ( h ) {\displaystyle f'''(x)=\lim _{h\to 0}{\frac {3f(x+h)-3f(x-h)-6hf'(x)}{h^{3}}},x\neq (\forall F)(h)}
滿足: x , a , b , c ≠ ( ∀ F ) ( h ) , 2 a = b c , b , c ≠ 0 , F ≠ c o n s t a n t − f u c t i o n − r u l e r {\displaystyle x,a,b,c\neq (\forall F)(h),2a=bc,b,c\neq 0,F\neq constant-fuction-ruler}
滿足: x , a , b , c , d , g , k ≠ ( ∀ F ) ( h ) , 2 a = c k , 2 d = b g , c k 2 + b g 2 = 0 , 2 ( a + d ) − c k 3 − b g 3 ≠ 0 , F ≠ c o n s t a n t − f u c t i o n − r u l e r {\displaystyle x,a,b,c,d,g,k\neq (\forall F)(h),2a=ck,2d=bg,ck^{2}+bg^{2}=0,2(a+d)-ck^{3}-bg^{3}\neq 0,F\neq constant-fuction-ruler}
<<School:李煌數學研究院