李煌圆周率计算公式: π 2 9 = 1 + 1 5 2 + 1 7 2 + 1 11 2 + 1 13 2 + 1 17 2 + 1 19 2 + 1 23 2 + 1 25 2 + 1 29 2 + 1 31 2 + … {\displaystyle {\frac {\pi ^{2}}{9}}=1+{\frac {1}{5^{2}}}+{\frac {1}{7^{2}}}+{\frac {1}{11^{2}}}+{\frac {1}{13^{2}}}+{\frac {1}{17^{2}}}+{\frac {1}{19^{2}}}+{\frac {1}{23^{2}}}+{\frac {1}{25^{2}}}+{\frac {1}{29^{2}}}+{\frac {1}{31^{2}}}+\ldots }
李煌e计算公式: 1 e − 1 = 1.5 + 4 ∑ n = 1 ∞ 1 1 + ( 4 n π ) 2 {\displaystyle {\frac {1}{{\sqrt {e}}-1}}=1.5+4\sum _{n=1}^{\infty }{\frac {1}{1+(4n\pi )^{2}}}}
<<School:李煌数学研究院
注明:以下内容由某个未名作者撰写,但在我的内容下提供手稿是应该注明身份的,这样不仅是对该作者本人的负责,也是对李煌老师的尊重,因此在此对该作者表示强烈抗议和不满
第壹个公式即
π 2 9 = ∑ n >= 1 , n ∤ 2 , n ∤ 3 1 n 2 {\displaystyle {\frac {\pi ^{2}}{9}}=\sum _{n>=1,n\nmid 2,n\nmid 3}{\frac {1}{n^{2}}}} ,
可由
π 2 6 = ∑ n >= 1 1 n 2 {\displaystyle {\frac {\pi ^{2}}{6}}=\sum _{n>=1}{\frac {1}{n^{2}}}}
得之.