哥德巴赫猜想是加法數論中的一個分支,1900年德國數學家希爾伯特專門介紹了這個重要的問題
8. Problems of prime numbers
8=3+5,
36=31+5,
....。就是哥德巴赫猜想。
當所有整數與都是素數-哥德巴赫猜想.
因為偶數2N=(N+X)+(N-X).
就是哥德巴赫猜想。
若自然数n不能被不大于任何素数整除,则n是一个素数。
可以把上面的汉字内容等价转换成为英语字母表示:
......(1)
其中 表示顺序素数2,3,5,....。≠0。
若,则n是一个素数。
我们可以把(1)式内容等价转换同余式组表示 :
.......(2)
由于(2)的模,,..., 两两互素,
根据孙子定理(中国剩余定理)知,对于给定的,,...,,(2)式在...范围内有唯一解。
k=1时,,解得n=3,5,7。求得了(3,3²)区间的全部素数。
k=2时,,解得n=7,13,19; ,
解得n=5,11,17,23。
求得了(5,5²)区间的全部素数。
k=3時 |
|
|
|
|
|
31 |
7,37 |
13,43 |
19
|
|
11,41 |
17,47 |
23 |
29
|
|}求得了(7,7²)区间的全部素数。
仿此下去可以求得任意大的数以内的全部素数。并且一个不漏地求得。
对于所有可能的值,(1)和(2)式在...范围内,
有()()()...()
個解。
怎樣使得兩個自然數相加和相減都成為素數,即N+X成為素數,N-X也是素數。
根據除法算式定理:「給定正整數a和b,b≠0,存在唯一整數q和r(0≤r<b),使a=bq+r」。
再根據同餘定理:「每一整數恰與0,1,2,3,...,m-1中一數同餘(mod m)」。
所以,任給一個自然數N(N>4),都可以唯一表示成為:
(3)
其中 表示順序素數2,3,5,....。。
< N <
現在問,是否存在X,
(4)
≠,
≠。
如果X<N-2,則N+X與N-X都是素數,因為它們符合(1)(2)式。
設N=20,;
< 20 <
,,.
四個解是:21,27,3,9。小於N-2的X有3和9,我們得知,20+3與20-3是一對素數;20+9與20-9是一對素數。
這就是利用素數判定法則:最小剩餘不為零,並且,則N+X與N-X是一對素數。
因為(N+X)+(N-X)=2N。這就是著名的哥德巴赫猜想猜想,
我們需要證明(4)式必然有小於N-2的解,儘管我們現在不能證明它。
埃拉托斯特尼篩法的普遍公式已經為哥德巴赫猜想提供了合理框架,並且把問題轉入到初等數論範圍。
順便補充一句,(N+X)+(N-X)=2N是一種一維對稱(群,伽邏華20歲死於決鬥,他留下的思想「群」是將萬物綁在一起的粘合劑,對稱無所不在,例如鏡面對稱是二維對稱。)
設a,b,c是所謂「殆素數」,即n個素數的乘積:
- 是否【1+1】包含在【1+c】或者【a+b】之內? 如果回答:是!
- 證明程式是否可以從【1+c】或者【a+b】到達【1+1】? 如果回答:是!
- 【1+1】是否可以必然從【1+c】或者【a+b】中剝離出來? 如果回答:是!
- 如果最後證明了【1+1】不能成立,前面三條就是錯誤的。
分析一,就是說,前面三條是在假定【1+1】必須正確的情況下的「成果」,這個就荒唐了,我們還不知道最後是否正確,就假定了最後成果必然正確。
分析二,如果前面三條不能成立或者不能肯定必然成立,怎麼可以算是「成果」呢? 也就是說,從v布龍開始,到王元潘承洞陳景潤等都是建立在非邏輯前提下的證明,因此證明無效。
- 假定。只能用在否定結果的證明中,例如,歐幾里得證明素數無窮多個。假定a成立,可以推出b,得到c,c與a矛盾,所以假定的a不能成立,得到非a。
- 假定不能用在肯定的結論。假定a,可以推出b,得到c,c=a,或者c包含a,所以假定的a成立。(這個就是預期理由的錯誤)
- 為什麼「假定」只能用於否定的結論,而不能用於肯定的結論?
一个对科学理论更强的逻辑制约因素是,它们是能够被证伪的。换一句话说,因为以后能够被观测作有意义的检验,理论一定有被证伪的可能性。这种证伪的判据是区分科学与伪科学的一种方法。原因在于证实的内在局限性,证实只能增加一个理论的可信度,却不能证明整个理论的完全正确。因为在未来的某一个时刻,总是会发现与理论有冲突的事例。
素數公式