lim q → + ∞ − ( q k ) 1 n x = C , k ≠ 0 {\displaystyle \lim _{q\to +\infty }{\frac {-{({\frac {q}{k}})}^{\frac {1}{n}}}{x}}=\mathrm {C} ,k\neq 0} ,其中 C = ( 1 k ) 1 n {\displaystyle \mathrm {C} ={({\frac {1}{k}})}^{\frac {1}{n}}} 為李煌常數
lim q → + ∞ − ( q k ) 1 n − 1 x = C , k ≠ 0 {\displaystyle \lim _{q\to +\infty }{\frac {-{({\frac {q}{k}})}^{\frac {1}{n-1}}}{x}}=\mathrm {C} ,k\neq 0} ,其中 C = ( 1 k ) 1 n − 1 {\displaystyle \mathrm {C} ={({\frac {1}{k}})}^{\frac {1}{n-1}}} 為李煌常數
lim q → + ∞ − ( q k ) 1 3 x = C , k ≠ 0 {\displaystyle \lim _{q\to +\infty }{\frac {-{({\frac {q}{k}})}^{\frac {1}{3}}}{x}}=\mathrm {C} ,k\neq 0} ,其中 C = − 2 k 1 3 ( 1 + 3 i ) {\displaystyle \mathrm {C} ={\frac {-2}{k^{\frac {1}{3}}{(1+{\sqrt {3}}i)}}}} 為李煌常數
或者滿足 lim q → + ∞ − ( q k ) 1 3 x = C , k ≠ 0 {\displaystyle \lim _{q\to +\infty }{\frac {-{({\frac {q}{k}})}^{\frac {1}{3}}}{x}}=\mathrm {C} ,k\neq 0} ,其中 C = 2 k 1 3 ( − 1 + 3 i ) {\displaystyle \mathrm {C} ={\frac {2}{k^{\frac {1}{3}}{(-1+{\sqrt {3}}i)}}}} 為李煌常數
或者滿足 lim q → + ∞ − ( q k ) 1 3 x = C , k ≠ 0 {\displaystyle \lim _{q\to +\infty }{\frac {-{({\frac {q}{k}})}^{\frac {1}{3}}}{x}}=\mathrm {C} ,k\neq 0} ,其中 C = ( 1 k ) 1 3 {\displaystyle \mathrm {C} ={({\frac {1}{k}})}^{\frac {1}{3}}} 為李煌常數
或者 發散
<<School:李煌數學研究院