{ n = ϕ ( w ) − 1 , n ≠ 0 x = c ( a 2 − a c ϕ ( w ) − 1 ) y = a z = a − c ϕ ( w ) − 1 {\displaystyle {\begin{cases}n=\phi (w)-1,n\neq 0\\x=c(a^{2}-ac^{\phi (w)-1})\\y=a\\z=a-c^{\phi (w)-1}\end{cases}}} 其中: ( a , w ) = 1 , ( a − c n , w ) = 1 {\displaystyle (a,w)=1,(a-c^{n},w)=1}
{ x = c ( a 2 − a c p − 2 ) y = a z = a − c p − 2 {\displaystyle {\begin{cases}x=c(a^{2}-ac^{p-2})\\y=a\\z=a-c^{p-2}\end{cases}}} ,其中:p为素数, p ≠ 2 , ( a , p ) = 1 , ( a − c p − 2 , p ) = 1 {\displaystyle p\neq 2,(a,p)=1,(a-c^{p-2},p)=1}
<<School:李煌数学研究院