李煌老师发现伽罗华的反例,伽罗华认为这个方程没有根式解,
而李煌老师发现其存在根式解,
而且是完美的解析解.
伽罗华存在反例:
代数方程 x 7 + x = ( 7 − 7 6 7 ) 1 6 {\displaystyle x^{7}+x={\Bigg (}7-7^{\frac {6}{7}}{\Bigg )}^{\frac {1}{6}}} 存在根式解
x = ( 7 1 7 − 1 ) 1 6 {\displaystyle x={\Bigg (}7^{\frac {1}{7}}-1{\Bigg )}^{\frac {1}{6}}}
代数方程 x 7 + x = ( 13 42 ( 13 7 − 7 7 ) 7 49 ) 1 6 {\displaystyle x^{7}+x={\Bigg (}{\frac {13^{42}(13^{7}-7^{7})}{7^{49}}}{\Bigg )}^{\frac {1}{6}}} 存在根式解
x = ( 13 7 − 7 7 ) 1 7 ( ( 13 7 − 7 7 ) 1 7 7 ) 1 6 7 {\displaystyle x={\frac {(13^{7}-7^{7})^{\frac {1}{7}}({\frac {(13^{7}-7^{7})^{\frac {1}{7}}}{7}})^{\frac {1}{6}}}{7}}}
<<School:李煌数学研究院