數學作為科學的定義與認知

来自維基學院
跳到导航 跳到搜索

大学院系划分中常见“科学和数学”系,这指出了这两个领域被看作有緊密聯繫而非同一。實際上,數學家通常會在大體上與科學家合作,但在細節上卻會分開。這亦是數學哲學眾多議題的其中一個。

高斯稱數學為「科學的皇后」。[1]在拉丁原文Regina Scientiarum[[Category:含有Template:ISO 639 name la的條目]],以及其德語(Königin der Wissenschaften)中,對應於科學的單字的意思皆為知識(領域)。而實際上,science一詞在英語內本來就是這個意思,且無疑問地數學在此意義下確實是一門「科學」。將科學限定在自然科學則是在此之後的事。若認為科學是只指物理的世界時,則數學,或至少是純數學,不會是一門科學。愛因斯坦曾如此描述:「數學定律越和現實有關,它們越不確定;若它們越是確定的話,它們和現實越不會有關。」[2]

許多哲學家相信數學在經驗上不具可否證性[3],且因此不是波普爾所定義的科学。但在1930年代時,在數理邏輯上的重大進展顯示數學不能歸併至邏輯內,且波普爾推斷「大部份的數學定律,如物理及生物學一樣,是假設演繹的:純數學因此變得更接近其假設為猜測的自然科學,比它現在看起來更接近。」[4]然而,其他的思想家,如較著名的拉卡托斯,便提供了一個關於數學本身的可否證性版本。

另一觀點則為某些科學領域(如理論物理)是其公理為嘗試著符合現實的數學。而事實上,理論物理學家齊曼即認為科學是一種公眾知識且因此亦包含著數學。[5]在任何的情況下,數學和物理科學的許多領域都有著很多相同的地方,尤其是從假設所得的邏輯推論之探索。

直覺實驗在數學和科學的猜想建構上皆扮演著重要的角色。實驗數學在數學中的重要性正持續地在增加,且計算和模擬在科學及數學中所扮演的角色也越來越加重,減輕了數學不使用科學方法的缺點。在史蒂芬·沃爾夫勒姆2002年的著作《一種新科學》中他提出,計算數學應被視為其自身的一科學領域來探索。

數學家對此的態度並不一致。一些研究應用數學的數學家覺得他們是科學家,而那些研究純數學的數學家則時常覺得他們是在一門較接近邏輯的領域內工作,且因此基本上是個哲學家。許多數學家認為稱他們的工作是一種科學,是低估了其美學方面的重要性,以及其做為七大博雅教育之一的歷史;另外亦有人認為若忽略其與科學之間的關聯,是假裝沒看到數學和其在科學與工程学之間的交互促進了許多在數學上的發展此一事實。這兩種觀點之間的差異在哲學上產生了數學是被創造(如藝術)或是被發現(如科學)的爭議。


註解[编辑 | 编辑源代码]

  1. Waltershausen
  2. 愛因斯坦,第28頁。愛因斯坦這段話是在回答以下問題:"how can it be that mathematics, being after all a product of human thought which is independent of experience, is so admirably appropriate to the objects of reality?"他亦關心數學在自然科學中不可想像的有效性
  3. Shasha, Dennis Elliot; Lazere, Cathy A. Out of Their Minds: The Lives and Discoveries of 15 Great Computer Scientists. Springer. 1998: 228. 
  4. 波普爾1995, p. 56
  5. Ziman

延伸閱讀[编辑 | 编辑源代码]